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Discrete attractor dynamics underlies 
persistent activity in the frontal cortex
Hidehiko K. Inagaki1, Lorenzo Fontolan1, Sandro Romani1* & Karel Svoboda1*

Short-term memories link events separated in time, such as past sensation and future actions. Short-term memories are 
correlated with slow neural dynamics, including selective persistent activity, which can be maintained over seconds. In a 
delayed response task that requires short-term memory, neurons in the mouse anterior lateral motor cortex (ALM) show 
persistent activity that instructs future actions. To determine the principles that underlie this persistent activity, here 
we combined intracellular and extracellular electrophysiology with optogenetic perturbations and network modelling. 
We show that during the delay epoch, the activity of ALM neurons moved towards discrete end points that correspond 
to specific movement directions. These end points were robust to transient shifts in ALM activity caused by optogenetic 
perturbations. Perturbations occasionally switched the population dynamics to the other end point, followed by incorrect 
actions. Our results show that discrete attractor dynamics underlie short-term memory related to motor planning.

Short-term memory is the ability of the brain to maintain information 
over seconds. Neurons in the frontal cortex and related brain regions 
show persistent, or slowly varying, changes in spike rate that correlate 
with the maintenance of short-term memories1–9. This neural correlate 
has been extensively studied in delayed response tasks in non-human 
primates3,8 and, more recently, in rodents6,7,9 (Fig. 1a). In a typical task, 
an instruction informs the type of action to be performed and a go cue 
determines the timing of action, but only after a delay epoch, during 
which animals maintain a memory of the instruction and/or plan a 
movement. Persistent delay activity that predicts future movements is 
referred to as preparatory activity2,7,8,10.

The ALM is part of a multi-regional network that mediates motor 
planning10–13. A large proportion of ALM neurons exhibit preparatory 
activity that predicts licking direction6. The dynamics of ALM neural 
population can be analysed in activity space, in which each dimension 
corresponds to the activity of one neuron. ALM activity during the 
delay epoch is approximately two-dimensional9. The coding direction 
(CD) vector discriminates trial types (that is, right or left lick), and 
activity projected along the CD contains almost all direction-selective 
activity9,11. The second dimension corresponds to non-selective slow 
ramping activity9,11.

After current is injected into isolated neurons, activity typically 
decays within milliseconds, reflecting an interaction of rapid repolar-
izing currents and the neuronal membrane time constant14 (Fig. 1b, 
left). Several mechanisms could bridge the gap in time scales between 
neuronal time constants and the slow dynamics observed during motor 
planning15–31. Neurons could be wired into networks that produce 
sequential neuronal activation, effectively extending network time 
constants18. However, our previous analysis did not detect sequential 
activity in ALM during the delay epoch9. Here we focus on testing 
other models of persistent activity. First, specialized cell-autonomous 
mechanisms could maintain multi-stable persistent activity22,32,33. 
Second, feedback in neural networks can compensate for dissipation 
of excitation. Depending on the structure of the circuit, and the prop-
erties of individual neurons, the network can behave as a continuous 
attractor (or integrator) with a continuum of stable (or quasi-stable) 
states16,23,30,31, or one or more discrete attractors with distinct activity 
states17,19,28,29 (Fig. 1b, Extended Data Fig. 1). Continuous and discrete 

attractor models can explain the neuronal activity that underlies short-
term memory and decision-making15–17,24–26,34, and it has therefore 
been difficult to distinguish between these models11. Here we analyse 
the mechanisms that underlie persistent activity in mice performing a 
delayed directional licking task.

Testing for cell-autonomous mechanisms
We performed whole-cell recordings from left ALM neurons during 
a delayed response task6,9 (79 cells) (Fig. 2a–c, Extended Data Fig. 2). 
Twenty of the recorded neurons were selective during the delay epoch 
(selective cells; spike rate significantly different between correct lick-
right and correct lick-left trials; Wilcoxon rank sum test, P < 0.05). 
The membrane potential (Vm) to spike rate relationship was approxi-
mately threshold linear35 (Extended Data Fig. 2). Similar to extracellu-
lar recordings6,9, average selectivity increased during the delay epoch 
(Fig. 2d, Extended Data Fig. 3b, j). Therefore, persistent changes in Vm 
are consistent with persistent changes in spike rate during the delay 
epoch.

The membrane time constant limits how long isolated neurons can 
maintain activity after a transient input. The membrane time constant, 
estimated by fitting an exponential function to Vm following current 
injections, was short for both selective (21.3 ± 19.7 ms, mean ± s.d., 
n = 19) and non-selective cells (20.5 ± 16.9 ms, mean ± s.d., n = 54). 
Moreover, membrane fluctuations were faster in the delay epoch com-
pared to the pre-sample epoch (Extended Data Fig. 3c, d, k, l). Long 
membrane time constants therefore do not explain preparatory activity.

Other cell-autonomous mechanisms could account for persistent 
activity22,32,33. First, spike bursts can activate voltage-dependent chan-
nels to trigger cell-autonomous persistent activity22,32,33. However, only 
a small proportion of neurons (12 out of 79 cells, 4 out of 20 selective 
cells) showed bursts (at least 1 complex spike per 5 trials; Extended 
Data Fig. 3e, f, m, n), and bursts did not increase during the delay 
epoch (Extended Data Fig. 3g, h, o, p). Therefore, spike bursts do not 
contribute to persistent activity during the delay epoch.

Second, cell-autonomous mechanisms underlying persistent 
activity are expected to involve conductances activated by depolari-
zation22,32,33. Persistent activity should then be perturbed by hyper-
polarization32. For a subset of recordings with sufficiently long 
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durations, we hyperpolarized cells by 12.0 ± 4.9 mV (mean ± s.d., 
n = 10). Hyperpolarized cells ceased to fire spikes, but selectivity in 
Vm was similar after current injection36 (Fig. 3, Extended Data Fig. 4a, 
d); differences in selectivity were probably caused by differences in 
input impedance (Extended Data Fig. 4b, c) and decreased inhibitory 
currents (hyperpolarization moved the membrane potential closer to 
the reversal potential for chloride). Although it is unlikely that we con-
trolled membrane potential throughout the dendritic arbors37, spike 
bursts—which require dendritic electrogenesis—were eliminated 
by somatic hyperpolarization (Extended Data Fig. 4e). These results 
indicate that spiking and conductances activated by depolarization 
are not necessary for selectivity in Vm. Altogether, cell-autonomous 
mechanisms by themselves are unlikely to account for persistent activ-
ity in ALM. Instead, network mechanisms (Fig. 1b) probably explain 
the persistent activity, possibly in collaboration with cell-autonomous 
mechanisms21,38.

Funnelling of membrane potential
We now focus on network mechanisms (Fig. 1b). In a system that fol-
lows continuous attractor dynamics, activity during the delay epoch is 
expected to diffuse over time20,39,40, resulting in an increase of across-
trial variability (Extended Data Fig. 1). By contrast, fluctuations in Vm 
decreased during the delay epoch, and reached a minimum immedi-
ately after the go cue (Fig. 4a, b, Extended Data Fig. 5). This decrease 
was stronger in selective neurons, particularly in lick-right trials 
(Fig. 4c, d, Extended Data Fig. 5) (hierarchical bootstrap comparing 
across-trial fluctuations in the baseline and the delay epoch; Methods). 
The reduction in across-trial Vm fluctuations was not caused by a ceil-
ing effect imposed by the spike threshold. First, the threshold linear 
Vm-to-spike rate relationship (Extended Data Fig. 2) indicates that the 
activity during the delay epoch was not close to saturation. Second, 
the reduction in across-trial Vm fluctuations was independent of the 
distance to spike threshold (Extended Data Fig. 5j).

A reduction in across-trial variability in spike count has been 
reported during motor planning in non-human primates41. However, 

the interpretation of fluctuations on the basis of spike counts is complex 
because both the across-trial variance of spike rate and the variance of 
spike generation contribute to the overall variance39. Our whole-cell 
recording data show a reduction in variability of Vm, which controls 
spike rate39. This is inconsistent with continuous attractor dynamics 
(except for special conditions, where the variance of input decreases 
over time; Extended Data Fig. 1x, w).

Robustness to perturbations
We next analysed population activity in ALM. Silicon probes were 
used to record multiple single units (755 units, 20 sessions, 6 mice; 
37.8 ± 16.6 units, mean ± s.d., per behavioural session)9 (Fig. 5a). For 
each recording session, we projected population activity of individ-
ual trials to the CD9,11 (Fig. 5b, Extended Data Fig. 6a–d, Methods). 
The distribution of the end points of the trajectories at the go cue was 
bimodal (Fig. 5b, Extended Data Fig. 6e–g), with one peak correspond-
ing to correct lick-right trials, and the other to correct lick-left trials. 
Therefore, activity along the CD moved towards discrete end points.

To distinguish among models, we performed bilateral optogenetic 
inactivation (photoinhibition; Methods) of ALM during the beginning 
of the delay epoch. Following perturbation, activity should remain 
shifted (continuous attractor), recover to the same end point (single 
moving attractor and multiple discrete attractors) or occasionally 
switch to the other end point (multiple discrete attractors) (Fig. 1b, bot-
tom; Extended Data Fig. 1). Consistent with previous work9,11, strong 
photoinhibition (1.5 mW per spot; median activity, 2.4% of baseline) 
resulted in near chance-level performance (Extended Data Fig. 7a, b), 
confirming that other brain regions cannot rescue preparatory activity 
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Fig. 1 | Models of persistent preparatory activity. a, Behavioural task. 
The instruction (tones for the auditory task, Figs. 2–6; pole location for 
the tactile task, Extended Data Figs. 1–4) was presented during the sample 
epoch. The mouse reported its decision after the delay epoch by directional 
licking. The duration of the delay epoch was 1.2 s (Figs. 2–4), 2.0 s (Fig. 5), 
or randomized (Fig. 6). b, Potential mechanisms underlying persistent 
activity. Left, in an isolated neuron, activity caused by a brief input (arrow, 
at time 0) decays following the membrane time constant (tau) of the cell. 
Excitatory feedback can compensate for the decay to produce a continuous 
or discrete attractor dynamics (Methods). Right, top, energy landscapes 
of networks; middle, activity trajectories following a brief input at time 0; 
bottom, activity trajectories following a brief perturbation (cyan bar).
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Fig. 2 | Whole-cell recordings in ALM. a, Whole-cell recordings from left 
ALM. b, Membrane potential (Vm), six example trials (lick-right). Time is 
aligned to the go cue. Dashed lines separate trial epochs. D, delay epoch; 
R, response epoch; S, sample epoch. Green lines denote first licks. c, Top, 
mean spike rate; bottom, mean membrane potential (same cell as b)  
(n = 19 lick-right trials, and 17 lick-left trials). Blue lines denote correct 
lick-right trials; red lines denote correct lick-left trials. d, Selectivity of 
ALM neurons based on spike rate (top) and Vm (bottom) in the auditory 
task (n = 10 cells). Shaded area denotes s.e.m. (bootstrap).
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in ALM10,11. Here we used more modest photoinhibition (0.1–0.3 mW 
per spot; median activity, 20–60% of baseline; Extended Data Fig. 7d–j). 
These perturbations transiently reduced selectivity (Fig. 5a, Extended 
Data Figs. 6d, 8b).

In perturbed trials that resulted in correct movement, selectivity 
recovered to the trajectories of unperturbed trials (Fig. 5a, Extended 
Data Fig. 8a, b, e). The recovery was slower for stronger photoinhibition 
(Extended Data Fig. 8c, Methods); this is predicted by discrete attractor 
models because the perturbation moves the activity trajectory closer 
to the separatrix, in which the dynamics are slower42 (Extended Data 
Fig. 1t). In perturbed trials that resulted in an incorrect movement 
direction, neural activity switched trajectories to the other trial type 
(Fig. 5a, Extended Data Fig. 8e). Activity trajectories thus snapped 
to one of the two discrete end points for both behavioural outcomes 
(correct or incorrect). Similar to individual neurons, trajectories along 
the CD recovered in perturbed trials followed by correct movement 
(Fig. 5c, e, g). Trajectories recovered to the opposite end point in per-
turbed trials followed by incorrect licks (Fig. 5d, e, g). This bistability 
is consistent with two discrete attractors (Fig. 1b, right).

We next analysed how the activity along CD relates to the drift of 
trajectories along the CD (d(projection to CD)/dt in Fig. 5f)42. For 
continuous attractors, drift should be independent of the activity level 
(Extended Data Fig. 1h). For discrete attractors the drift should be 
directed towards the end point, faster far from the end points, and slow 
close to the end points (projection to CD near 0 or 1; Extended Data 
Fig. 1o, v). Therefore, the relationship between activity along CD and 
the drift should show negative slopes around the end points, which 
indicates stable fixed points. This was apparent for the lick-right end 
point (Fig. 5f, P = 0.015, Methods). This dynamic behaviour is con-
sistent with discrete attractor dynamics.

The switching of CD trajectories distinguishes multiple discrete 
attractors from other models (Extended Data Fig. 1x). Because mice 
made errors even without perturbation (performance, 87.0 ± 8.4%, 
mean ± s.d.), some of the perturbed trials may reflect errors that are 
independent of the perturbation. We decoded the future licking direc-
tion on the basis of activity before the perturbation (decoder perfor-
mance = 78.1 ± 4.5%, mean ± s.d.; Methods). Trials decoded to be 
correct before the perturbation showed switching in the end points in 
incorrect trials (Extended Data Fig. 6i–l), which indicates that some 
switches were caused by the perturbation. The recovery and switch-
ing of CD trajectories towards discrete end points after perturbation 

is consistent with multiple discrete attractors dynamics in ALM 
(Extended Data Fig. 1x).

Discrete attractor dynamics and ramping activity
In a variety of behavioural tasks, preparatory activity ramps up to a 
movement3–9. By contrast, standard discrete attractor models show 
stationary activity once the fixed points are reached (Fig. 1b, Extended 
Data Fig. 1). Ramping dynamics in discrete attractor networks can be 
obtained by the tuning of network parameters to generate slow drift to 
the fixed points11 (internal ramping model; Extended Data Fig. 9i–o) or 
a non-selective ramping input that moves fixed points apart over time 
(external ramping model; Fig. 6a, Extended Data Fig. 9b–h). The rate of 
recovery from perturbations is expected to be independent of ramping 
dynamics in the external ramping model (Extended Data Fig. 9p–r).

We explored these possibilities further. Ramping predicts the timing 
of movement5,43,44. We performed a separate set of recordings with ran-
domized delays (Fig. 6b, Extended Data Fig. 10a) (1,005 units, 23 ses-
sions, 5 mice), which precludes prediction of the timing of movement. 
Similar to the fixed delay task9, many neurons (390 out of 867 pyramidal 
neurons) showed selective persistent activity during the delay epoch. 
Spike rates and selectivity ramped up rapidly during the sample epoch, 
before the earliest possible go cue, and then remained near stationary 
during the delay epoch (Fig. 6c, d, Extended Data Fig. 8k, l). In addi-
tion, neither CD nor non-selective mode showed ramping-up during 
the delay epoch, unlike in the fixed delay task (Fig. 6e, Extended Data 
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Crosses denote s.e.m. (bootstrap). Dashed line denotes linear regression. 
Slope of linear regression, Pearson’s correlation coefficient (corr. coef.), 
and the t-statistic of Pearson’s correlation coefficient (P) are shown.
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Figs. 8f–j, 10e–g). We repeated the perturbation experiments during the 
random delay task. For all conditions, the results were similar to those 
observed in the fixed delay task (Fig. 6f–h, Extended Data Figs. 6m–x, 
10b–d). Furthermore, the speed of recovery from perturbations was 
similar between the fixed delay task (375 ± 100 ms, mean ± s.e.m.) 
and the random delay task (367 ± 249 ms, mean ± s.e.m.) (Extended 
Data Fig. 8c, h; P = 0.377, bootstrap). Therefore, ALM activity follows 
similar bistable discrete attractor dynamics for ramping or stationary 
dynamics during the delay epoch.

Discussion
The membrane potential dynamics was inconsistent with cell-auton-
omous mechanisms as a primary mechanism for persistent activity. 

During the delay epoch, activity funnelled towards one of two discrete 
end points. After perturbations, activity trajectories recovered to reach 
one of the end points. These experiments provide direct evidence for 
multiple discrete attractors as a mechanism that underlies short-term 
memory (Extended Data Fig. 1x).

ALM neurons with similar selectivity show high spike count correla-
tions9, suggesting preferential coupling. A nonlinear network with like-
to-like coupling can produce discrete attractors without fine-tuning15. In 
addition to local connectivity, ALM is bidirectionally connected with tha-
lamic nuclei that show similar preparatory activity12. Given the strong cou-
pling between ALM and thalamus12, our bilateral perturbations of ALM 
probably modified activity not only in ALM but also in thalamus. ALM 
is a crucial part of a multi-regional network that generates bistability10.

Fig. 5 | Robustness of discrete trajectories. a, Top, ALM was 
photoinhibited bilaterally during the first 600 ms of the delay epoch with 
400 ms ramp down. Bottom, two example single units. For spike rasters, 15 
trials per trial type were randomly selected. Solid line denotes mean spike 
rate. Blue, correct lick-right trials; red, correct lick-left trials; dark blue, 
incorrect lick-right trials; dark red, incorrect lick-left trials. In the incorrect 
lick-right trials, mice were instructed to lick right but licked left. Cyan 
bar denotes photoinhibition. b, Left, trajectories along CD (trials pooled 
across sessions, n = 11; Methods). Line denotes mean; shading denotes 
s.e.m. (hierarchical bootstrap). Middle, distribution of projection to CD in 
the middle of the delay epoch (1.2 s before the go cue, green arrowhead). 
Right, distribution of projection to CD at the end point (time 0,  

purple arrowhead). Shading denotes s.e.m. (hierarchical bootstrap). Blue, 
correct lick-right trials; red, correct lick-left trials. c, As in b, for perturbed 
correct trials. Dashed lines denote trajectories of unperturbed correct 
trials. d, As in c, for perturbed incorrect trials. Dark blue, incorrect lick-
right trials; dark red, incorrect lick-left trials. e, Overlay of trajectories 
along the CD. f, Phase line of trajectories along the CD (Methods). Solid 
line, data; dashed line, shuffled data; shading denotes s.e.m. (hierarchical 
bootstrap, trials pooled across 11 sessions). g, Absolute difference in 
projection to the CD between perturbed and unperturbed trials at the 
middle delay (M; green) and end points (E; magenta). Grey, individual 
session; black, mean. P = 0.46, 0.46, 0.0098 and 0.00098 from left to right 
(two-sided Wilcoxon signed-rank test, n = 11 sessions). ∗∗P < 0.01.
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In standard attractor models, the dynamics converge to stationary 
activity patterns. By contrast, neural activity during the delay epoch 
shows systematic ramping, creating a challenge for discrete attractor 
models24,26. Four observations suggest that ramping reflects an external 
input to ALM, which reflects the animal’s expectation about timing in 
the task. First, ramping depends on the task structure. For example, in 
the random delay, task ramping is absent (Fig. 6)—this indicates that 
complex dynamics during the delay is not an obligatory component of 
preparatory activity43. Second, recovery from perturbations is faster 
than ramping itself. Third, despite the change in ramping dynamics, 

the speed of recovery from perturbations was similar between the 
two tasks. Fourth, the non-selective mode recovers to ramp even 
after bilateral silencing of ALM11. Ramping might be generated in a  
cortico-cerebellar loop13.

In contrast to transient bilateral perturbations of ALM, transient 
unilateral perturbations early in the delay epoch have no behavioural 
effect11. Consistently, activity and selectivity recover rapidly after uni-
lateral perturbation. Recovery relies on input from the contralateral 
ALM via the corpus callosum11. We created models in which mod-
ular discrete attractor networks are distributed across the two hem-
ispheres, coupled via the corpus callosum, and receive non-specific 
input (Extended Data Fig. 9). These models account for the results 
presented here and in previous studies11. Although our models (Fig. 1 
and Extended Data Figs. 1, 9) represent example implementations, the 
key predictions of the models (Extended Data Fig. 1x) are not expected 
to depend on the specific implementation.

Our task design only has two behavioural choices. This probably 
explains two stable end points in ALM dynamics. The attractor model 
can accommodate a large range of end points28. It is possible that each 
learned movement corresponds to a discrete attractor. Testing this 
hypothesis represents an important area for future investigation.

Previous studies have reported neural activity and behaviour con-
sistent with discrete attractors45–47. For example, selective persistent 
activity in prefrontal cortex of primates is robust to sensory distrac-
tors48, and remains discrete even with graded sensory stimuli49,50. Our 
perturbation experiments show that this robustness and discreteness 
are properties of circuits that involve the frontal cortex. Together, dis-
crete attractor dynamics subserve short-term memory in the frontal 
cortex in a wide-range of behaviours.

Online content
Any methods, additional references, Nature Research reporting summaries, source 
data, statements of data availability and associated accession codes are available at 
https://doi.org/10.1038/s41586-019-0919-7.
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Methods
Mice. This study is based on data from 31 male mice (aged from postnatal day (P) 
60). We used four transgenic mouse lines: PV-IRES-Cre51, Ai32 (Rosa-CAG-LSL-
ChR2(H134R)-eYFP-WPRE, JAX 012569)52, Gad2-Cre (a gift from B. Zemelman), 
and VGAT-ChR2-eYFP53 (see Supplementary Tables 1–3 for details).

All procedures were in accordance with protocols approved by the Janelia 
Institutional Animal Care and Use Committee. Detailed information on water 
restriction, surgical procedures and behaviour have been published6,54. Surgical 
procedures were carried out aseptically under 1–2% isofluorane anaesthesia. 
Buprenorphine HCl (0.1 mg kg−1, intraperitoneal injection; Bedford Laboratories) 
was used for postoperative analgesia. Ketoprofen (5 mg kg−1, subcutaneous injec-
tion; Fort Dodge Animal Health) was used at the time of surgery and postopera-
tively to reduce inflammation. After the surgery, mice were allowed free access to 
water for at least three days before start of water restriction. Mice were housed in 
a 12 h:12 h reverse light:dark cycle and behaviourally tested during the dark phase. 
A typical behavioural session lasted 1–2 h and mice obtained all of their water in 
the behaviour apparatus (approximately 1 ml per day; 0.3 ml was supplemented 
if mice drank less than 0.5 ml). On other days, mice received 1 ml water per day. 
Mice were implanted with a titanium headpost. For ALM photoinhibition, mice 
were implanted with a clear skull cap6. Craniotomies for recording were made 
after behavioural training.
Behaviour. Mice were trained using established procedures54. For the auditory 
task (Figs. 2–6, Extended Data Figs. 2–8, 10), at the beginning of each trial, five 
tones were presented at one of two frequencies: 3 or 12 kHz (for lick-right and 
lick-left trials, respectively). Each tone was played for 150 ms with 100 ms intertone 
intervals. The sample epoch (1.15 s total) was the time from onset of the first tone 
to the end of the last tone. The following delay epoch lasted for another 1.2 s (for 
whole-cell recordings; Figs. 2–4, Extended Data Figs. 2–5), 2.0 s (for silicon probe 
recordings; Fig. 5, Extended Data Figs. 6–8), or various durations (for the random 
delay task; see below). An auditory go cue (carrier frequency 6 kHz, with 360 Hz 
modulating frequency, to make it distinct from instruction tones) separated the 
delay and the response epochs (0.1 s). To compensate the sound intensity for tuning 
curve of C57BL6 auditory system55, the sound pressure was 80, 70 and 60 dB for 
3, 6 and 12 kHz sound, respectively. These frequencies are relatively invulnerable 
to hearing loss observed in C57BL6 mice56.

For the random delay task (Fig. 6, Extended Data Figs. 6, 8, 10), delay durations 
were randomly selected from eight values (0.3, 0.5, 0.7, 0.9, 1.2, 2, 3.2 and 4 (or 5) s; 
Supplementary Table 3). Probability of the delay durations mimicked cumulative 
distribution function of the exponential distribution (τ = 1.4 s) with 0.2 s offset 
(Fig. 6b). Because the hazard function of the exponential distribution is constant, 
animals cannot predict the timing of the go cue (or reward). Performance in this 
random delay task was similar to that in a task with a fixed delay duration, or 
fixed delay task (Extended Data Fig. 10a). In Extended Data Fig. 8l (random delay 
(short)), we analysed units recorded during a random delay task with shorter delay 
distributions (τ = 0.9 s with 0.3 s offset), which were randomly selected from six 
values (0.3, 0.6, 1.2, 1.8, 2.4 and 3.6 s; Supplementary Table 3).

For the tactile task (for whole-cell recordings; Extended Data Figs. 2–5), at the 
beginning of each trial, a metal pole (diameter, 0.9 mm) moved within reach of the 
whiskers (0.2-s travel time) for 1.0 s, after which it was retracted (0.2-s retraction 
time)6. The sample epoch (1.4 s total) was the time from onset of the pole move-
ment to completion of the pole retraction. The delay epoch lasted for another 1.2 s  
after completion of pole retraction. An auditory go cue separated the delay and the 
response epochs (pure tone, 3.4 kHz, 0.1 s).

The pre-sample (baseline) epoch was 1.2 s long, unless otherwise described. A 
two-spout lick-port (4.5 mm between spouts) was used to record licking events 
and deliver water rewards. After the go cue, licking the correct lick-port produced 
a water reward (approximately 2 µl); licking the incorrect lick-port triggered a 
timeout (0–5 s). Licking early during the trial (early lick trials) was punished by 
a timeout (1 s). Trials in which mice did not lick within 1.5 s after the go cue 
(no-response trials) were rare and typically occurred at the end of behavioural 
sessions. These no-response and early lick trials were excluded from analyses. For 
the random delay tasks, mice were first trained with a fixed delay duration of 1.2 s. 
After criterion performance was reached (80% correct), we switched to the random 
delay task and trained at least one additional week before recordings.
Photoinhibition. For the fixed delay task, photoinhibition was deployed on 
25–33% behavioural trials (Fig. 5, Extended Data Figs. 6, 8). For the random delay 
task, photoinhibition was deployed in 25% of trials with 2 s delay duration (Fig. 6, 
Extended Data Figs. 6, 8, 10). To prevent mice from distinguishing photoinhibition 
trials from control trials using visual cues, a masking flash (1-ms pulses at 10 Hz) 
was delivered using 470-nm LEDs (Luxeon Star) throughout the trial. Photostimuli 
from a 473-nm laser (Laser Quantum) were controlled by an acousto-optical mod-
ulator (Quanta Tech).

Photoinhibition of ALM was performed through the clear-skull cap (beam 
diameter at the skull: 400 µm at 4σ). The light transmission through the intact 

skull is approximately 50%6. We stimulated parvalbumin-positive interneurons in 
PV-IRES-Cre mice crossed to Ai32 reporter mice expressing ChR2. Behavioural 
and electrophysiological experiments showed that photoinhibition in the PV-IRES-
Cre × Ai32 mice was indistinguishable from the VGAT-ChR2-eYFP mice12.

To silence ALM bilaterally during early or late delay, we photostimulated for 
0.6 s (40 Hz photostimulation with a sinusoidal temporal profile) with 0.4 s ramp-
ing down, starting at the beginning of the delay epoch or 1.0 s after the beginning 
of the delay epoch, respectively. We photostimulated four spots in each hemisphere, 
centred on ALM (anteroposterior (AP) 2.5 mm; medial lateral (ML) 1.5 mm, 
bregma) with 1 mm spacing (in total eight spots bilaterally) using scanning Galvo 
mirrors. We photoinhibited each spot sequentially at the rate of 5 ms per step. 
The laser power noted in the figures and text indicates the time-averaged laser 
power per spot. The total laser power was therefore eightfold higher. The bilateral 
manipulation prevents rescue of neural dynamics from unaffected regions11. With 
the modest intensities of laser power we used, rebound spiking6 was small and did 
not cause early behavioural responses (Extended Data Fig. 7c, e, g).
Behavioural data analysis. Behavioural performance was the proportion of correct 
trials, excluding early lick and no-response trials (Extended Data Figs. 7b, 10a).  
Early lick rate (Extended Data Figs. 7c, 10a) was the proportion of early lick tri-
als excluding no-response trials. For Extended Data Fig. 7c, only the early licks 
during the last 1 s of the delay epoch (after photoinhibition) were counted. 
No-response rate (Extended Data Fig. 10a) was the proportion of no-response 
trial. Photoinhibition decreased performance in both fixed delay and random delay 
tasks (P = 0.00074 and P = 0.0035, n = 20 and 23 sessions, respectively; two-sided 
Wilcoxon signed-rank test; comparing unperturbed trials versus trials with 0.3 mW 
photoinhibition; Supplementary Tables 2 and 3), without affecting the no-response 
rate (P = 0.90 and P = 0.062, respectively).
In vivo whole-cell recording. All recordings were made from the left hemi-
sphere. Whole-cell recordings were made using pulled borosilicate glass (Sutter 
Instrument). A small craniotomy (100–300-μm diameter) was created over ALM 
under isofluorane anaesthesia and covered with cortex buffer (125 mM NaCl,  
5 mM KCl, 10 mM glucose, 10 mM HEPES, 2 mM MgSO4, 2 mM CaCl2; adjust 
pH to 7.4). Whole-cell patch pipettes (7–9 MΩ) were filled with internal solution 
(in mM): 135 K-gluconate, 4 KCl, 10 HEPES, 0.5 EGTA, 10 Na2-phosphocreatine, 
4 Mg-ATP, 0.4 Na2-GTP and 0.3% biocytin (293–303 mOsm, pH 7.3). The mem-
brane potential was amplified (Multiclamp 700B, Molecular Devices) and sampled 
at 20 kHz using WaveSurfer (http://wavesurfer.janelia.org). Membrane potentials 
were not corrected for the liquid junction potential. After the recording, the cra-
niotomy was covered with Kwik-Cast (World Precision Instruments). Each mouse 
was used for two or three recording sessions. Recordings were made 235–818 μm 
(521.6 ± 120.8 μm, mean ± s.d.) below the pia. Brief current injections (−100 pA, 
100 ms) were applied at the end of each trial to measure input resistance, series 
resistance and membrane time constant57.

For current injection experiments (Fig. 3), we partially compensated for series 
resistance and injected a ramping current until action potentials disappeared58,59. 
Actual membrane potential was calculated post hoc based on injected current and 
series resistance. Mean membrane potential was −48.9 ± 3.4 mV (mean ± s.d., 
n = 10) without current injection. We injected −200 ± 153 pA, resulting in 
Vm = −60.9 ± 4.5 mV (mean ± s.d., n = 10). Series resistance did not change 
before and after current injections (P = 0.447, Wilcoxon rank sum test, n = 10). 
In 5 out of 10 recordings, we were able to release current injections at the end of 
experiments to confirm that (1) membrane potential returned to spontaneous 
levels; and (2) neurons still produced action potentials.
Whole-cell recording data analysis. Whole-cell recordings with more than 10 
correct trials per direction (lick-right and lick-left trials) were analysed (21.5 ± 8.2 
correct trials per direction, mean ± s.d., n = 79). Performance during record-
ing was 85.0 ± 11.8% (mean ± s.d., n = 79). Only correct trials were analysed. 
Cells recorded during the tactile task (n = 42) have previously been reported12 
(Supplementary Table 1).

To measure membrane potential, spikes were clipped off (Figs. 2–4, Extended 
Data Figs. 2–5). Neurons that differentiated correct trial-types during the delay 
epoch based on spike counts were deemed as selective (20 out of 79 in ALM). To 
compute selectivity, we computed the difference in spike count (100-ms averaging 
window) or membrane potential between trial types (correct only) for each selec-
tive neuron (Fig. 2d, Extended Data Fig. 3b, j).

To obtain spike-triggered median of Vm (Extended Data Fig. 2), we selected 
spikes that were not preceded by any other spikes in a 50-ms window. To obtain the 
Vm-to-spike rate relationship, Vm and spike rate were averaged over a 50-ms sliding 
window. Mean spike rate was calculated for each step of Vm (1-mV step; mean was 
defined for a step with more than 500 data points). For statistics of spike-triggered 
median and the Vm-to-spike rate relationship, we tested the null hypothesis that 
spike-triggered median (or Vm-to-spike rate curves) in the pre-sample epoch and 
the delay epoch were identical. We performed hierarchical bootstrapping60–62: we 
first randomly selected trials with replacement and then spikes within a trial with 
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replacement. We measured the Euclidian distance of each bootstrapped spike- 
triggered median (or Vm-to-spike rate curves) from the mean in the pre-sample 
epoch. The proportion of bootstrap trials with higher Euclidian distance in the 
delay epoch compared to that in the pre-sample epoch is shown as the P value. 
The results were robust to changes in sliding bin size (50, 100 and 200 ms, data 
not shown).

Delay amplitude of spike rate or Vm (Fig. 3c, Extended Data Figs. 3, 4) was 
defined as delay epoch spike rate or Vm minus pre-sample epoch spike rate or Vm. 
Spike bursts (Extended Data Figs. 3, 4) were detected as depolarization events  
5 mV higher than spike threshold lasting longer than 20 ms. Vm autocorrelation 
was calculated after spike clipping (Extended Data Fig. 3). The time constant of 
membrane fluctuations was based on the autocorrelation function (Extended Data 
Fig. 3) (time point when the function drops below 1/e).

To obtain across-trial fluctuations (Fig. 4, Extended Data Fig. 5), we averaged 
Vm over a 100- or 200-ms sliding window. We used the first and third quartile 
difference (difference between 75% point and 25% point) or the trimmed standard 
deviation (standard deviation after trimming off maximum and minimum data 
point) to calculate the across-trial fluctuations at each time point. This procedure 
removed the effects of a few outlier trials with spike bursts. For statistics, we per-
formed hierarchical bootstrapping: first we randomly selected cells with replace-
ment, and second we randomly selected trials within a cell with replacement.
Extracellular electrophysiology. A small craniotomy (diameter, 0.5 mm) 
was made over the left ALM hemisphere one day before the recording session. 
Extracellular spikes were recorded using Janelia silicon probes with two shanks 
(250 µm between shanks) (A2x32-8mm-25-250-165). The 64-channel voltage 
signals were multiplexed, recorded on a PCI6133 board (National Instrument) 
and digitized at 400 kHz (14 bit). The signals were demultiplexed into 64 voltage 
traces sampled at 25 kHz and stored for offline analysis. One to eight recording 
sessions were obtained per craniotomy. Recording depth (between 800 and 1,100 
µm) was inferred from manipulator readings. The craniotomy was covered with 
cortex buffer. The tissue was allowed to settle for at least five minutes before the 
recording started.
Extracellular recording data analysis. The extracellular recording traces were 
band-pass filtered (300–6,000 Hz). Events that exceeded an amplitude threshold 
(4 s.d. above the background) were sorted using JRClust63.

For the fixed delay task with 2-s delay (Fig. 5, Extended Data Figs. 6, 8), in 
total 755 single units were recorded across 20 behavioural sessions from 6 mice 
(Supplementary Table 2). The same dataset has previously been analysed9. For the 
random delay task (Fig. 6, Extended Data Figs. 6, 8, 10), in total 1,307 single units 
were recorded across 34 behavioural sessions from 9 mice (Supplementary Table 3). 
For the calibration of photoinhibition without a behavioural task, 316 single units 
were recorded from 2 mice (Extended Data Fig. 7).

Spike widths were computed as the trough-to-peak interval in the mean spike 
waveform. The distribution of spike widths was bimodal (data not shown); units 
with width less than 0.35 ms were defined as putative fast-spiking neurons (261 
out of 2,378), and units with width more than 0.5 ms were defined as putative 
pyramidal (regular-spiking) neurons (2,069 out of 2,378). This classification was 
verified by optogenetic tagging of GABAergic neurons6 (Extended Data Fig. 7e). 
Units with intermediate spike widths (0.35–0.50 ms, 48 out of 2,378) were excluded 
from our analyses.

Neurons with significant selectivity (two-sided Wilcoxon rank sum test compar-
ing spike counts in two correct trial types, P < 0.05) during the delay epochs were 
classified as selective cells. Selective cells were classified into lick-right preferring 
versus lick-left preferring, on the basis of their total spike counts during the delay 
epoch. To compute selectivity, we took the spike rate difference between two cor-
rect trial types for each selective neuron.

For peri-stimulus time histograms (Figs. 5, 6, Extended Data Fig. 8k), only 
correct trials were included. For the peri-stimulus time histograms and selectivity 
of the random delay task (Fig. 6, Extended Data Fig. 8k), only spikes before the go 
cue were pooled. Spikes were averaged over 100 ms with a 1-ms sliding window.

For Extended Data Fig. 8a, f, we compared spike rates of all unperturbed trials 
(both correct and incorrect trials, but not early lick or no-response trials) versus all 
perturbed trials using two-sided t-test. Cells with P < 0.05 was counted as signifi-
cant cell at each time bin. For this plot, we did not correct for multiple comparisons.

For Extended Data Fig. 8d, i, we calculated selectivity for correct and incorrect 
trials during 1–2 s after the delay onset. We defined polar coordinates r and θ as 
below:
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




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We analysed neurons with more than 10 trials for all trial types (correct lick-right, 
correct lick-left, incorrect lick-right and incorrect lick-left trials). Many selective 
neurons in ALM deviate from θ = −45°, indicating mixed coding9. We defined 
cells with −67.5° < θ < −22.5° with r > 2 as preparatory cells because the selec-
tivity changes based on outcomes9. We defined cells with −22.5° < θ < 22.5° with 
r > 2 as non-preparatory cells (Extended Data Fig. 8e, j). The switching of activity 
trajectories in perturbed incorrect trials was more prominent in preparatory cells.

To quantify the recovery time course of selectivity after photoinhibition (Extended 
Data Fig. 8c, h), we first calculated a difference in selectivity between unperturbed 
trials and perturbed trials. The recovery time constant was based on fitting of an 
exponential decay function to this difference in selectivity. We fitted the last 1.2 s of 
the delay epoch. Bootstrap was used to calculate the standard error of mean.

To plot the cumulative distribution function of increase in spike rate during the 
delay epoch (Extended Data Fig. 8l), we calculated changes in spike rate during 
the delay epoch for each unit. For the fixed delay task, we analysed the whole delay 
epoch (spike rate at the end of delay minus the spike rate at the delay onset divided 
by delay duration); for the random delay task, we analysed the first 2 s of the delay 
epoch (spike rate at 2 s after the delay onset minus the spike rate at the delay onset 
divided by two) in trials with delay durations longer than 2 s.
CD analysis. To calculate the CD for a population of n simultaneously recorded 
neurons, we identified an n-dimensional vector maximally distinguishing the 
two trial types (correct lick-right and correct lick-left trials), in the n-dimensional  
activity space. For each neuron, we calculated average spike rates in the correct 
lick-right and correct lick-left trials separately (with 100-ms average window 
and 10-ms sliding step). rlick-right, t and rlick-left, t are n-dimensional vectors of 
average spike rate at one time point. The difference in the mean response vector,  
wt = rlick-right, t − rlick-left, t, showed high correlation during the delay epoch9,11 
(Extended Data Fig. 6b, m). We averaged wt during the last 600 ms of the delay 
epoch and normalized by its own norm to obtain the CD. For the fixed delay task 
with 2-s delay (Fig. 5, Extended Data Fig. 6), we calculated CD based on randomly 
selected 50% of unperturbed correct trials (fit trials). To obtain trajectories along 
CD, we projected spike rate in the remaining trials (test trials) to the CD as an inner 
product. Next, we switched the fit and test trials, and pooled the trajectories along 
CD for analysis. For the random delay task (Fig. 6, Extended Data Figs. 6, 10), we 
calculated CD based on trials with non-2-s delay durations. To obtain trajectories 
along the CD, we projected spike rate in the trials with 2-s delay duration. Therefore, 
only trials with 2-s delay duration were analysed further for the random delay task.

Approximately half of selective cells show preparatory activity9, which antici-
pates upcoming movements, regardless of behavioural outcome (correct or incor-
rect). We only analysed sessions with more than 5 preparatory neurons (11 out of 
20 sessions, 13 out of 23 sessions for the fixed delay task and the random delay task, 
respectively; Supplementary Tables 2 and 3) in Figs. 5, 6, Extended Data Figs. 6, 
10b–g. Preparatory cells were defined as cells with r > 2 and −22.5° > θ > −67.5° 
(Extended Data Fig. 8d, i; also see above).

In Figs. 5, 6, and Extended Data Figs. 6, 10, projection to CD was normalized 
based on the value at the end point in each session. The distribution of end point 
values was bimodal (Figs. 5, 6, Extended Data Fig. 6). For Figs. 5b–e, 6e, f and 
Extended Data Figs. 6, 10, we pooled trials from all sessions (with preparatory cells) 
after normalizing projections to the CD in each session. We calculated median of 
these pooled trajectories. Hierarchical bootstrapping was used to estimate standard 
errors of mean: first, we randomly selected session number with replacement and, 
second, randomly select trial number within a session with replacement.

To construct phase lines (Figs. 5f, 6g, Extended Data Fig. 6k, v), we analysed 
trajectories of unperturbed and perturbed trial types shown in Figs. 5e, 6f and 
Extended Data Fig. 6j, u. We analysed the last 1,200 ms of the delay epoch. The 
drift of a trajectory at time t is defined as dx_CDt/dt = (x_CDt + 1 − x_CDt − 1)/2,  
in which x_CDt denotes projection to CD at time t. The time step was 10 ms. After 
pooling all time points and trajectories, the mean dx_CDt/dt was calculated for 
each step of x_CD (0.2 (AU) step). Hierarchical bootstrapping was used to esti-
mate s.e.m. values. For the shuffling control, we shuffled the relationship between 
x_CD and dx_CDt/dt. To test the slope at the lick-right end point (x_CD = 1), we 
constructed phase lines by analysing trajectories of unperturbed and perturbed 
trial types, in which mice licked right (that is, correct lick-right trials and incorrect 
lick-left trials). We estimated the slope of phase line using linear regression. We 
tested the null hypothesis that the slope is higher than 0 (hierarchical bootstrap, 
n = 1,000 iterations): P = 0.015, 0.020, 0.014 and 0.050 in Figs. 5f, 6g, Extended 
Data Fig. 6k and 6v, respectively.

To decode future licking direction before the perturbation (Extended Data 
Fig. 6i–l, t–x), we analysed the values of CD projection at the last bin 50 ms before 
the delay onset (x_CD−2.05). We calculated the chance that mice lick right as a 
function of x_CD−2.05 (i) (step between x_CD−2.05 (i) is 0.1 (AU); we calculated 
the probability of lick right for trials with x_CD−2.05 value higher than x_CD−2.05 
(i)) based on unperturbed correct and incorrect trials (Extended Data Fig. 6i, t). 
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Using this relationship, we defined a decision boundary for lick-right direction as 
the smallest x_CD−2.05 (i) with probability of licking right that was higher than 
70%. Perturbed trials with x_CD−2.05 values higher than the decision boundary are 
decoded as lick-right trials. The decision boundary for lick-left direction was based 
on a similar procedure. We defined the decision boundary and putative correct 
trials independently for each session. We estimated the decoder performance using 
leave-one-out procedures. Decoder performance was 78.1 ± 4.5% (mean ± s.d.) 
for the fixed delay task, and 72.8 ± 10.9% (mean ± s.d.) for the random delay task.

In Extended Data Figs. 6d, o, 10e–g, we analysed modes explaining the remain-
ing activity variance. To calculate the non-selective ramping mode, we first found 
eigenvectors of the population activity matrix using singular value decomposition 
at each time point and averaged over the last 600 ms of the delay epoch. The data 
for singular value decomposition at each time point were an n × trial-number 
matrix of spike rate at each time point minus mean spike rate during the pre-sample 
epoch. The first eigenvectors from the singular value decomposition was rotated 
using the Gram–Schmidt process to be orthogonal to the CD. Because the projec-
tion to the first vector resulted in non-selective ramping activity in the fixed delay 
task (Extended Data Fig. 10f), we referred to this vector as RM11. To calculate CD 
during early delay (CDe), we averaged wt during the first 1 s of the delay epoch. To 
calculate, perturbation mode (PM), we averaged rperturbed trials, t − runperturbed trials, t  
(difference in spike rate between perturbed and unperturbed trials at each time 
point. Here, we pooled both correct lick-right and correct lick-left trials) during the 
first 1 s of the delay epoch. To calculate, CD during stimulation (CDs), we averaged 
rlick-right, perturbed trials, t − rlick-left, perturbed trials, t (difference in spike rate between per-
turbed correct lick-right and correct lick-left trials) during the first 1 s of the delay 
epoch. All these modes were normalized by their own norm and rotated using the 
Gram–Schmidt process to be orthogonal to the CD and to each other. In Extended 
Data Fig. 10f, g, projections to non-selective RM were normalized by the difference 
between pre-sample epoch to the end of delay epoch for each session. To calculate 
the normalized selectivity (Extended Data Fig. 6d, o), we first calculated the total 
selectivity as a square sum of the selectivity across neurons (square sum of the  
elements of an n-dimensional vector). Then we calculated the square of selectivity 
of the projection along each mode in unperturbed and perturbed trials, and divided 
it by the total selectivity in unperturbed trials.
Network models. We modelled two classes of dynamical systems to simulate the 
average activity of neurons in ALM: (i) continuous attractor networks (Fig. 1b, 
left, Extended Data Fig. 1b–h, w); and (ii) discrete attractor networks (Fig. 1b, 
Extended Data Fig. 1i–v). Furthermore, we constructed two different implemen-
tations of discrete attractor networks: a single moving attractor network (Fig. 1b, 
Extended Data Fig. 1i–o) that exhibits one stable fixed point at different locations 
in the phase space depending on trial type; a multiple discrete attractors network 
(Fig. 1b, Extended Data Fig. 1p–v) that exhibits two coexisting stable fixed points, 
corresponding to left and right licking. To further account for the results of uni-
lateral ALM perturbation experiments that have previously been described11, we 
considered a robust modular version of the architecture shown in Fig. 6a (Extended 
Data Fig. 9). Furthermore, we explored two potential mechanisms that may under-
lie slow ramping dynamics during the delay epoch: ramping was either caused by 
non-selective external input (external ramping model; Extended Data Fig. 9b–h) or 
a consequence of slow internal dynamics (internal ramping model; Extended Data 
Fig. 9i–o). We used well-established neural implementations of continuous or dis-
crete attractor dynamical systems and reproduced key observables obtained from 
the recorded neural population. See Supplementary Table 4 for the parameters we 
chose to build the models described below. Many implementations are possible 
for each class of model16,19,21,23,25,28–31,34,38,47,64–66. We implemented networks with 
the simplest architecture, but our results (Extended Data Fig. 1x) hold for a large 
range of parameters and architectures (not shown). Note that our interpretation 
of the recovery dynamics following optogenetic perturbations might break down 
in particular situations with fine-tuned connectivity and non-normal dynamics67. 
Because the slow and fast modes are not orthogonal, a transient perturbation along 
the fast mode would generate a change in CD that quickly recovers following the 
perturbation. However, if the perturbation is even slightly off the fast mode, the 
slow mode would not recover to the unperturbed trajectory as in our models.
One-hemisphere discrete attractor model. We simulated the average activity of 
two excitatory populations, one selective to the right licking direction and one 
selective to the left licking direction, and one inhibitory population (Fig. 1b, 
Extended Data Fig. 1i–v). A simplified description of the membrane potential 
dynamics of excitatory population i, hi(t), was governed by the following nonlinear 
differential equation:
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Wij denotes the synaptic strength between postsynaptic population i and presyn-
aptic population j, labels L and R indicate the lick-left and lick-right selective  

excitatory populations, label I indicates the inhibitory population, τi is the integra-
tion time constant of the excitatory populations, I t( )E

nonsel  is the external non- 
selective input current, ηi(t) is a random Gaussian noise with zero mean and var-
iance σ2. τ = 100 msE  is the integration time constant of the excitatory population. 
The time-dependent external input I t( )i

sel  consisted of selective input representing 
the sensory stimulus (a 1-s long boxcar function exponentially filtered with time 
constant τexp = 20 ms) that was delivered during the sample epoch to either lick-left 
or lick-right excitatory neurons, depending on the trial type. The peak amplitude 
of I t( )i

sel  was drawn from a Gaussian distribution of mean µi
sel and standard devi-

ation σi
sel. GE(hL,R) denotes the firing rates of the excitatory populations (see below). 

For the inhibitory population, we assumed instantaneous integration of the current 
received from the excitatory populations (τΙ = 0 ms). We modelled the firing rate 
of the inhibitory population, denoted by the nonlinear transduction function GI, 
as threshold-linear. The inhibitory firing rate can thus be written as:
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in which I t( )I
stim  denotes the increase in the external input mimicking the opto-

genetic photostimulation. I t( )I
stim  was modelled as a 600-ms long, exponentially 

filtered, positive input delivered at the end of the sample period. The value of the 
baseline input current II

nonsel was such that rI was always greater than zero. For this 
reason, we replaced GI(hI(t)) in equation (1) with the argument of the threshold 
linear function in equation (2) to obtain:
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where now the synaptic strengths ~Wij and the baseline input ~I t( )i
nonsel  are rescaled 
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The synaptic weights were chosen such that the phase space contained one (single 
moving attractor) or two (multiple discrete attractor) stable fixed points during 
the sample and delay epochs, and one fixed point during the pre-sample epoch, 
corresponding to baseline activity. The network switched between these two 
regimes approximately 50 ms after the beginning of the sample epoch when the 
excitatory baseline currents IE

nonsel were significantly increased.
Excitatory transduction function. We chose a sigmoidal transduction function 
GE(hi) for the excitatory populations. This function has an interpretable parametri-
zation, mimicking the effect of short-term synaptic plasticity68:
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Variables uj and xj are steady-state synaptic nonlinearities resulting from, respec-
tively, short-term facilitation and depression of excitatory synapses; U is the  
synaptic release probability, τf and τD are the facilitation and depression recovery 
time constants (Supplementary Table 4). The activation function g(x) displays an 
exponential behaviour when ex/k1 and a linear one for �x k:

= + /g x k e( ) log(1 ) (7)x k

The results were qualitatively similar if we used a threshold-linear transduction 
function = +G h h( ) [ ]E i i  (data not shown).
Modular discrete attractor model. To model robust modular networks, we linked 
two one-hemisphere attractor networks (Extended Data Fig. 1a) via mutually excit-
atory coupling (WC) between populations with the same selectivity in both mod-
ules (Extended Data Fig. 9a). Each module thus contained one cell type selective 
for licking right and one cell type selective for licking left, both connected to an 
inhibitory cell. During the sample epoch the amplitude of the selective input, ran-
domly varying from trial to trial µ σ= NI t( ) ( , ) ,i

sel sel sel  was delivered to lick-left 
or lick-right excitatory neurons of both modules, depending on trial type. The 
particular choice of parameters determined whether—once the dynamics con-
verged to the attractor—across-trial variability increased, decreased or remained 
constant in an attractor network, contrary to continuous attractor networks in 
which across-trial variability generally increases (see ‘Continuous attractor model’). 
Our choice of parameters caused a decrease in across-trial variability with time.
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Ramping activity. To reproduce the slow ramping of neural activity observed in 
the electrophysiological recordings (Fig. 5), we considered two potential mecha-
nisms in our simulations: (i) a monotonically increasing nonselective external input 
(external ramping model; Extended Data Fig. 9b–h); and (ii) the existence of a 
weak vector field along the direction of input integration, capable of slowing down 
the network dynamics during sample and delay epochs (internal ramping model; 
Extended Data Fig. 9i–o). In (i), a nonselective input current I t( )ramp , linearly 
ramping during the sample epoch and plateauing at the end of the delay epoch, 
was added to the current I t( )E

nonsel   of all excitatory populations. We set the network 
parameters, including the peak amplitude of I t( )ramp such that the network would 
develop two stable fixed points during the delay period, corresponding to left and 
right licking directions. A single fixed point, corresponding to the baseline firing 
rate, was present all along the pre-sample epoch. The nonselective ramping input 
destabilized the pre-sample fixed point creating two stable fixed points during the 
sample epoch, corresponding to the left and right licking directions (Fig. 6a, 
Extended Data Fig. 9b–h). Conversely, in (ii), the network parameters were chosen 
so that the neural activity would slowly converge towards the fixed points 
(Extended Data Fig. 9i–o). In this configuration, which demanded substantial fine 
tuning, the phase space displayed two constant decision-related fixed points (left 
or right licking) throughout the delay epoch. In the single moving attractor case, 
a selective input I t( )i

sel,ramp , linearly ramping during sample epoch and plateauing 
during the delay epoch, was added to the transient selective input to move the fixed 
point away from baseline activity.
Continuous attractor model. Continuous attractor dynamics was modelled using 
the negative derivative feedback mechanism (Fig. 1b, left). The firing rates of  
three populations (Extended Data Fig. 1a), were driven by recurrent synaptic inputs 
s t( )ij :
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in which τij is the recovery time constant of synaptic state variables connecting 
presynaptic population j to postsynaptic population i, the noise term ξi(t) is a 
coloured Gaussian noise with zero mean and two-point autocorrelation function 
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distribution and τnoise is the decay constant of the autocorrelation function. The 
other variables in equation (8) have the same role as in the discrete attractor mod-
els. To maintain persistent activity during the delay epoch, the conditions were (i) 
balanced synaptic strengths; and (ii) time constants of positive feedback are longer 
than those associated with negative feedback (Supplementary Table 4). The linear 
system in equation (8) can thus display persistent activity lasting several seconds 
(Extended Data Fig. 1b, left). During lick-right trials, we delivered a positive input, 
with the same temporal dynamics as in the discrete attractor model, to the lick-
right selective population, while a negative input was delivered during lick-left 
trials. To obtain the reduction in across-trial variability, we ran an additional set 
of simulations in which the variance of ξi(t) decreased exponentially with time, 
starting from the end of the sample period (Extended Data Fig. 1w). The same 
reduction could, in principle, be accounted for in a negative derivative feedback 
network with nonlinear units close to saturation. Because we did not observe sat-
uration in intracellular recordings, we did not model this situation.
Analysis of simulated activity. Numerical integration was performed using the 
Euler–Maruyama method for all attractor models and second-order Runge–Kutta 
method for the continuous attractor model. To mimic the optogenetic activation 
of inhibitory neurons, we chose—for each model—four values of I t( )I

stim  with 
increasing peak amplitude (see Supplementary Table 4). We simulated 1,000 trials, 
of which 500 were lick-right and 500 lick-left trials, for each condition and model. 
All trajectories were smoothed using a 100-ms average window with 1-ms sliding 
step. The CD was computed using the same procedure adopted in the analysis of 
extracellular recordings (rlick-right − rlick-left, then averaging over the last 400 ms of 
the delay epoch). Neuronal activity in each trial was then projected onto the CD 
to obtain activity traces and subsequently normalized using the distribution of end 
points in each session (see ‘CD analysis’). As with experimental data, we then 
analysed correct and incorrect trials. Lick-left trials were classified as correct if the 
neural activity of the lick-left selective neuron was higher than the neural activity 

of lick-right selective neuron at the end of the delay period. In all attractor models, 
projected trajectories of trials classified as correct converged to the expected stable 
fixed point after bilateral or unilateral perturbation (Extended Data Figs. 1, 9). We 
calculated the drift of projected trajectories for each model using the last 1,200 ms 
of the delay epoch. We applied the same method as in experimental data. 
Fluctuations across trials were computed by taking the standard deviation across 
projected activity traces during correct trials, and normalizing them to their value 
at the beginning of the delay epoch (Extended Data Fig. 1e, l, s, w). Model perfor-
mance was computed by dividing the number of correctly classified trials by the 
total number of trials in each condition (Extended Data Fig. 9h, o).
Statistics. The sample sizes are similar to sample sizes used in the field. No statis-
tical methods were used to determine sample size. We did not exclude any mouse 
for data analysis. During experiments, trial types were randomly determined by a 
computer program. During spike sorting, experimenters cannot tell the trial type, 
so experimenters were blinded to conditions. All comparisons using Wilcoxon 
signed-rank and rank sum tests were two-sided except for Fig. 4d and Extended 
Data Fig. 5b–e, in which we tested the decrease in values from the baseline. All 
bootstrapping was done over 1,000 iterations.
Reporting summary. Further information on research design is available in 
the Nature Research Reporting Summary linked to this paper.
Code availability. For network models, Matlab code is available at the Github 
repository (https://github.com/fontolanl/ALM_attractors).

Data availability
Electrophysiological data are available at FigShare (https://figshare.com/; 
doi:10.25378/janelia.7489253).
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Extended Data Fig. 1 | Continuous and discrete attractor models (one 
hemisphere). a, Schematic of simulated networks. The same architecture 
was used for the continuous attractor model (b–h), single moving  
attractor model (i–o) and multiple discrete attractors model (p–v).  
L, lick-left selective excitatory neurons; I, inhibitory interneurons, R, lick-
right selective excitatory neurons. Blue and red arrows indicate selective 
external input. b, Trajectories projected along the CD. Left, activity in 
unperturbed trials. Right, distribution of end points. Line denotes the 
mean; shading denotes s.d. Blue, correct lick-right trials; red, correct lick-
left trials. c, Left, activity in perturbed correct trials. Right, distribution of 
end points. Cyan bar on top, photoinhibition. Traces with lighter colours 
correspond to higher intensity of photoinhibition. d, Left, activity in 

perturbed incorrect trials. Right, distribution of end points. e, Across-
trial fluctuations during the delay epoch in unperturbed correct trials. 
Across-trial fluctuations are normalized for the value at 2.0 s before the 
go cue. f, Recovery speed of the CD in perturbed correct trials following 
perturbations. g, Absolute difference in projection to CD between 
perturbed and unperturbed trials at the middle delay (green) and end 
points (magenta). h, Phase line of trajectories. i–o, Dynamics of single 
moving attractor model. p–v, Dynamics of multiple discrete attractors 
model. w, Across-trial fluctuations in continuous attractor with decreasing 
external noise (Methods), normalized by their value 2.0 s before the go cue.  
x, A summary table comparing three models and data.
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Extended Data Fig. 2 | Whole-cell recordings example cells. Columns 
represent data from one cell. Top, mean spike rate; second row, mean 
membrane potential (Vm). Blue, correct lick-right trials; red, correct  
lick-left trials; third row, spike-triggered median of Vm. Spikes in the  
pre-sample epoch (black) and the delay epoch (blue) in correct lick-right 
trials were analysed. Shading denotes s.e.m. (hierarchical bootstrap).  
P value denotes the probability of the null hypothesis that spike-triggered 
medians are the same between epochs (Methods, hierarchical bootstrap); 
fourth row, relationship between Vm and spike rate of the pre-sample 

epoch (black), the delay epoch (blue) and all epochs (grey). Error bar 
denotes s.e.m. (hierarchical bootstrap). P value denotes the probability of 
the null hypothesis that Vm-to-spike rate curves are the same between the 
pre-sample epoch and the delay epoch (hierarchical bootstrap, Methods). 
All statistical tests are two-sided. When there was no overlap between the 
curves from the two epochs, we did not test (P = not applicable (N.A)). 
Cell 88–130, cells recorded during the auditory task; cell 135–184, cells 
recorded during the tactile task. Asterisk denotes selective cells. See 
Supplementary Table 1 for number of trials.



Article RESEARCH

Extended Data Fig. 3 | See next page for caption.
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Extended Data Fig. 3 | Analysis of Vm. a, Relationship between delay 
spike rate and Vm (delay epoch spike rate or Vm minus pre-sample epoch 
spike rate or Vm). For each cell, correct lick-right and correct lick-left 
trials are shown separately (n = 37 cells). Black, selective cells (n = 10 
cells). Red line, linear regression. Linear regression, Pearson’s correlation 
coefficient, and the t-statistic of Pearson correlation coefficient (P) are 
shown. b, Selectivity of ALM neurons based on spike rate (top) and 
Vm (bottom). Duplicate of Fig. 2d. Shading denotes s.e.m. (bootstrap, 
n = 10 cells). c, Autocorrelation of Vm during the pre-sample epoch (left) 
and the delay epoch in correct lick-right trials (middle). Subtraction 
of these two autocorrelation curves is shown on right to emphasize the 
difference between epochs. Thick line denotes mean across cells; thin lines 
denote individual cells (n = 37 cells). d, Comparison of time constant of 
membrane fluctuations based on autocorrelation between the pre-sample 
epoch and the delay epoch. Left, scatter plot of the time constant; right, 
histogram of the difference in time-constant between the delay epoch 
compared to the pre-sample epoch (change in time constant). P value 
determined by two-sided Wilcoxon signed-rank test examining a null 

hypothesis that the change in time constant is 0. The first P value, all cells 
(left; n = 37 cells); second P value, selective cells (right; n = 10 cells). The 
shorter time constant during the delay epoch is presumably due to increase 
in conductance. e, Distribution of number of spike bursts per trial in 
correct lick-right trials. White, all cells; black, selective cells. f, Spike raster 
(top) and spike rates (bottom) of correct lick-right trials in an example cell 
with high occurrence of spike bursts (cell 120, arrow in e). Blue, regular 
spikes; green, spikes belonging to spike bursts. Right, example spike bursts. 
g, Grand average spike rate of cells with more than 0.5 spike bursts per trial 
in correct lick-right trials (n = 12 cells). Shading denotes s.e.m. Top, spike 
rate of all spike types (regular spikes and spike bursts), (bottom) spike rate 
of spike bursts. h, Comparison of number of bursts per trial between the 
pre-sample epoch and the delay epoch. P value determined by two-sided 
Wilcoxon signed-rank test examining a null hypothesis that number of 
bursts per trial are the same between two epochs (n = 12 cells). Blue, 
correct lick-right trials; red, correct lick-left trials. Spike bursts did not 
increase during the delay epoch. i–p, The same format as in a–h for the 
tactile task. All cells, n = 42; selective cells, n = 10.
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Extended Data Fig. 4 | See next page for caption.
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Extended Data Fig. 4 | Negative current injection. a, Five example cells 
with negative current injection. Top, mean Vm without negative current 
injection; bottom, mean Vm with negative current injection. Blue, correct 
lick-right trials; red, correct lick-left trials. b, Input resistance (Rin) of cells 
with and without current injection (n = 10 cells). Data are pooled from 
cells analysed in c. P value determined by two-sided Wilcoxon signed-
rank test. Central line in the box plot is the median. Top and bottom edges 
are the 75% and 25% points, respectively. The whiskers show the lowest 
datum within 1.5 interquartile range (IQR) of the lower quartile, and the 
highest datum within 1.5 IQR of the upper quartile. c, Delay amplitude of 
Vm (delay epoch Vm minus pre-sample epoch Vm) with and without current 
injections (n = 10 cells). Delay amplitude during the current injection 
was normalized by the change in input resistance. Correct lick-right trials 
(blue) and correct lick-left trials (red) are shown separately. Crosses denote 
s.e.m. (bootstrap). Dashed line denotes linear regression. Slope of linear 
regression, Pearson’s correlation coefficient and the t-statistic of Pearson’s 

correlation coefficient (P) are shown. d, Lick-right delay selectivity 
(delay epoch Vm in lick-right trial minus delay epoch Vm in lick-left 
trial) with and without current injections (n = 10 cells). Crosses denote 
s.e.m. (bootstrap). Dashed line denotes linear regression. Slope of linear 
regression, Pearson’s correlation coefficient), and the t-statistic of Pearson 
correlation’s coefficient (P) are shown. e, Loss of spike bursts after current 
injection. Top, Vm of two example cells with high occurrence of spike 
bursts. Overlay of all correct lick-right trials. Black horizontal line, spike 
threshold. Regular spikes were removed and Vm was averaged over 100 ms. 
Sharp overshoots above the spike threshold indicate spike bursts. n = 19 
and 20 trials (cell 96 and 101, respectively). Right, two example spike 
bursts indicated by arrows (cell 101). Bottom, Vm of the same example cells 
with negative current injection. There was no spike to remove. Vm was 
averaged over 100 ms. Note the loss of sharp depolarizing events. n = 8, 
and 9 trials (cell 96 and 101, respectively).
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Extended Data Fig. 5 | Funnelling of Vm. a, Four example ALM neurons. 
Top, mean Vm; middle, all correct lick-right trials overlaid; bottom, all 
correct lick-left trials overlaid. To remove fast within trial fluctuations,  
Vm was averaged over 200 ms. b, The same plot as in Fig. 4c, d. n = 79 cells 
(both auditory and tactile tasks are pooled). Black, selective cells (n = 20 
cells). P values were determined by one-sided Wilcoxon signed-rank 
test (the same applies to c–e). The first P value, all cells; second P value, 
selective cells only. c, As in b for the correct lick-left trials. Statistical 
methods and n value as in b. d, As in b for comparison between the sample 
epoch and the delay epoch. Statistical methods and n value as in b.  
e, As in c for comparison between the sample epoch and the delay epoch. 
Statistical methods and n value as in b. f, Across-trial fluctuations of all 
cells (n = 37) (left), and selective cells (n = 10) (right) in the auditory task 
(as in Fig. 4b). Line, mean of across-trial fluctuations; shading denotes 
s.e.m. (hierarchical bootstrap). Blue, correct lick-right trials; red, correct 
lick-left trials. g, Testing for a decrease in across-trial fluctuations. P values 
reflect a null hypothesis that across-trial fluctuations during the delay 
epoch were higher than that during the pre-sample epoch (hierarchical 
bootstrap, n = 1,000 iteration). Across-trial fluctuations were measured 
as the quartile difference (left) or trimmed s.d. (right) of Vm across the 

same trial type (blue, correct lick-right trials; red, correct lick-left trials) 
(Methods). Both methods provided similar results. Vm was averaged 
over 100 ms (triangle) or 200 ms (square) to remove fast within-trial 
fluctuations. The result was robust to the averaging bin size. The dashed 
line, P = 0.025 (α = 0.05 for two-sided test). A schematic of statistical test 
in g and i is shown in the box below i. Across-trial fluctuations during the 
pre-sample epoch (0.6 s) was compared with the across-trial fluctuations 
during the delay epoch (variable durations: window size in g and i). The 
window ends at the time t, which is t = (time of the go cue) − (bin size)/2, 
to exclude the signal after the go cue. h, As in f for the tactile task. i, As in g  
for the tactile task. j, Relationship between Vm and the change in across-
trial fluctuations (across-trial fluctuations during the delay epoch minus 
across-trial fluctuations during the pre-sample epoch). Vm during the 
delay epoch was averaged and normalized to the spike threshold. Dashed 
line, linear regression. Slope of linear regression, Pearson’s correlation 
coefficient, and the t-statistic of Pearson’s correlation coefficient (P) are 
shown. Pooling both the tactile and auditory tasks, and excluding non-
spiking cells (n = 73 cells). The slope of regression line is opposite from 
what is expected for the ceiling effect.
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Extended Data Fig. 6 | See next page for caption.



ArticleRESEARCH

Extended Data Fig. 6 | Robustness of the CD to perturbation.  
a, Schematics. Projection of population activity to the CD. b, The CD is 
stable during the delay epoch. Pearson’s correlation coefficient of the CD 
between half of trials (fit trials) and the other half (test trials) (Methods). 
Grand average of all sessions (n = 11 sessions for b–l). c, Projection of 
individual trials to the CD in two example sessions (seven randomly 
selected trials per trial type; blue, correct lick-right trials; red, correct 
lick-left trials). d, Selectivity explained by different modes (dimensions 
in activity space). Left, selectivity over time. Solid line, unperturbed 
correct trials, dotted line, perturbed correct trials. Blue, total selectivity; 
other colours, selectivity along different modes. Middle, selectivity 
explained by each mode during early delay (first 1 s of the delay epoch). 
Right, selectivity explained by each mode during late delay (last 1 s of 
the delay epoch) (mean ± s.e.m.). CDe, CD during early delay; CDs, CD 
during stimulation; PM, perturbation mode; RM, non-selective ramping 
mode (Methods). Sum of all modes is shown on top. Selectivity did not 
increase along any of these modes during perturbations. Central line 
in the box plot is the median. Top and bottom edges are the 75% and 
25% points, respectively. The whiskers show the lowest datum within 
1.5 IQR of the lower quartile, and the highest datum within 1.5 IQR of 
the upper quartile. e, Distribution of projection to the CD at end points 
in each session is overlaid. Blue, correct lick-right trials; red, correct 
lick-left trials. f, Distribution of projection to CD at end points in all 

trial types (both correct and incorrect trials are pooled, but not early 
lick or no-response trials). Distribution of end points in each session is 
overlaid. g, Distribution of projection to the CD at end points in Fig. 5b, 
pooling correct and incorrect trials, but not early lick or no-response 
trials. Shading denotes s.e.m. (bootstrap). h, The same format as in g for 
perturbed trial types. i, Decoder based on projection to the CD at a time 
bin just before the onset of perturbation (Methods). Probability to lick 
right in trials with projection to CD higher than each value in x axis (blue). 
Probability to lick left in trials with projection to CD lower than each 
value in x axis (red). Dashed lines indicate decision boundaries for lick-
right (blue) and lick-left (red) trials (Methods). Shading denotes s.e.m. 
(hierarchical bootstrap). j, Trajectories along the CD in perturbed trials 
decoded to be correct trials before the onset of perturbation. Dotted line, 
unperturbed correct trials in Fig. 5e. k, Phase line of trajectories along 
CD of trials decoded to be correct trials before the onset of perturbation. 
Solid line, data; dashed line, shuffled data; shading, s.e.m. (hierarchical 
bootstrap). l, Absolute difference in projection to the CD between 
perturbed and unperturbed trials at the middle delay (green) and end 
points (magenta). Grey, individual session; black, mean. P = 0.57, 0.92, 
0.0078 and 0.0039 from left to right (two-sided Wilcoxon signed-rank 
test). ∗P < 0.05. m–x, The same format as in b–l for the random delay task. 
n = 13 sessions. In x, P = 0.79, 0.027, 0.00024 and 0.64 from left to right 
(two-sided Wilcoxon signed-rank test). ∗P < 0.05; ∗∗P < 0.01.
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Extended Data Fig. 7 | See next page for caption.
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Extended Data Fig. 7 | Characterization of bilateral photoinhibition 
of ALM. a, Schematic of bilateral photoinhibition of ALM. Eight 
photostimuli were applied to ALM in both hemispheres (spacing, 1-mm 
interval). These photostimuli are expected to uniformly silence excitatory 
neurons in ALM6. Photoinhibition started at the onset of the delay  
epoch (−2 s to the go cue) or at the middle of the delay epoch (−1 s to 
the go cue) and lasted for 600 ms with additional 400 ms ramping down 
(Methods). b, Effect of the photoinhibition with different laser powers  
on behavioural performance. Black, early delay inhibition; magenta, late 
delay inhibition. Thick lines, grand mean performance (n = 5 mice); 
thin lines, mean performance of each mouse. Error bars denote s.e.m. 
(hierarchical bootstrap). Laser power, time-averaged mean power per spot. 
c, Effect of photoinhibition with different laser powers on early lick rates. 
Early lick rate after the early delay photoinhibition is shown. The same 
format as in b. d, Schematic of silicon probe recording during bilateral 
photoinhibition of ALM in non-behaving mice (relevant to e–j).  
e, Spike rates of fast-spiking neurons (top) and regular-spiking neurons 
(bottom) during photoinhibition of ALM with eight spots. Each column 
represents data with different laser powers. Mean spike rate is shown. 
Cyan bar, time of photoinhibition. f, Spike rate of regular-spiking 
neurons during the photoinhibition. For each cell, mean spike rate during 
photoinhibition (100–600 ms) was divided by mean spike rate before 
photoinhibition (−1–0 s) to calculate the normalized spike rate (as in h 
and j). Increasing laser power resulted in stronger inhibition. ∗∗P < 0.01, 
two-sided Wilcoxon signed-rank test with Bonferroni correction. From 
left to right: P = 2.1 × 10−19, 2.2 × 10−25, 2.1 × 10−27, 4.2 × 10−27, 

1.6 × 10−27 and 2.7 × 10−31 (P values without Bonferroni correction), 
n = 188 cells. Central line in the box plot is the median. Top and bottom 
edges are the 75% and 25% points, respectively. The whiskers show 
the lowest datum within 1.5 IQR of the lower quartile, and the highest 
datum within 1.5 IQR of the upper quartile. g, Spike rate of regular-
spiking neurons after the photoinhibition. For each cell, mean spike rate 
after photoinhibition (1–2 s) was divided by the mean spike rate before 
photoinhibition (−1–0 s) to calculate normalized spike rate. Increasing 
laser power resulted in stronger rebound. ∗P < 0.05, ∗∗P < 0.01, two-sided 
Wilcoxon signed-rank test with Bonferroni correction. From left to right: 
P = 0.37, 7.1 × 10−3, 3.1 × 10−2, 1.4 × 10−2, 3.6 × 10−5 and 1.4 × 10−6 
(P values without Bonferroni correction), n = 188 cells. Box plots follow 
the same format as in f. h, Relationship between depth and spike rate of 
regular-spiking neurons during the photoinhibition. Photoinhibition 
affected neurons across layers. i, Spike rate of regular-spiking neurons 
during the photoinhibition at different locations. Mean spike rate is shown 
for each laser power (control, black). Distance of recording site (ALM) and 
centre of laser stimulation (centre of four spots in the same hemisphere) is 
shown. Laser spots were moved from ALM to posterior locations. j, Spike 
rate of regular-spiking neurons during the photoinhibition at different 
locations. Photoinhibition affected neurons 1 mm away from the laser, 
consistent with a previous report6. ∗∗P < 0.01, two-sided Wilcoxon signed-
rank test with Bonferroni correction. From left to right: P = 1.1 × 10−15, 
6.0 × 10−7, 0.61, 0.55, 0.52 (P values without Bonferroni correction), 
n = 87 cells. Box plots follow the same format as in f.
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Extended Data Fig. 8 | Effect of photoinhibition on neural populations. 
a, Proportion of cells with significant spike rate difference between 
unperturbed and perturbed trials at each time point (Methods). Cyan 
bar, photoinhibition. n = 667 cells. b, Selectivity during bilateral 
photoinhibition. Line denotes mean of all cells; shadow denotes s.e.m. 
(bootstrap). Black, unperturbed trials. Cyan bar, photoinhibition. 
n = 667 cells. c, Recovery speed of selectivity following perturbation 
(approximately −1.2 to 0 s before the go cue; Methods). ∗P = 0.032 
(testing a null hypothesis that recovery speed is the same between trials 
with 0.1 mW and 0.3 mW photoinhibition, bootstrap, two-sided). n = 667 
cells. Central line in the box plot is the median. Top and bottom edges are 
the 75% and 25% points, respectively. The whiskers show the lowest datum 
within 1.5 IQR of the lower quartile, and the highest datum within 1.5 IQR  
of the upper quartile. d, Relationship between selectivity in correct and 
incorrect trials. Mean selectivity during 1–2 s after the delay onset is 
shown. Inset, definition of θ (Methods). n = 465 cells. e, Mean spike rate 
of lick-right preferring neurons with different θ. Lines, grand mean of 
peri-stimulus time histogram; shading denotes s.e.m. (bootstrap). Blue, 
correct lick-right trials; red, correct lick-left trials; dark blue, incorrect 

lick-right trials; dark red, incorrect lick-left trials. Mean peri-stimulus 
time histogram of unperturbed correct trials (first row) are also shown 
as dashed lines in the second to fourth row. f–j, As in a–e for the random 
delay task. To calculate mean spike rate and selectivity, we pooled spikes 
before the go cue across trials with different delay durations. Because 
delay durations were different across trials, the time axis is aligned to 
the onset of the delay epoch. In h, ∗∗P = 0.009 (testing a null hypothesis 
that recovery speed is the same between trials with 0.1 mW and 0.3 mW 
photoinhibition, bootstrap, two-sided). n = 867 cells for f–h, and 487 
cells for i. k, Example single units (random delay task). Top, spike raster. 
Seven and twenty-five trials per trial type were randomly selected for 
unperturbed trials and perturbed trials, respectively. Bottom, mean spike 
rate pooling spikes before the go cue across trials with different delay 
durations. Blue, correct lick-right trials; red, correct lick-left trials; dark 
blue, incorrect lick-right trials; dark red, incorrect lick-left trials. Cyan 
bar, photoinhibition. l, Cumulative distribution of increase in spike rate 
during the delay epoch. Data from four different tasks are compared 
(Methods).
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Extended Data Fig. 9 | Modular discrete attractor models. We built 
models consisting of two modules, each corresponding to one ALM 
hemisphere, in accordance with the previously described functional 
architecture11. These models are consistent with (1) ramping dynamics 
during the delay epoch; (2) reproduce the response to transient 
bilateral inactivation (Fig. 5); and (3) the response to unilateral ALM 
perturbation11. The circuit architecture in each hemisphere is as in 
Extended Data Fig. 1. Slow ramping was caused by either external non-
selective input (b–h; external ramping model; note ramping external 
non-selective input in a) or internal slow dynamics (i–o; internal ramping 
model; note shallower energy landscape in a). All panels show results from 
the left hemisphere. In b–o, we modelled the fixed delay task (ramping 
activity during the delay epoch.) In p, q, we modelled the random delay 
task (stationary activity during the delay epoch). To make the activity 
during the delay epoch stationary, non-selective input was modified to 
be stationary for the external ramping model, and the energy landscape 
was modified to be steeper for the internal ramping model. With these 
modifications the two models are essentially equivalent. Therefore, 
we show only one model for the random delay task. n = 1,000 trials 
per model. a, Schematic of two-hemisphere network models. Circuit 
architecture, common to both models (middle), and time course of 
external inputs in each model (left and right). R, L and I correspond 
to lick-right selective excitatory neurons, lick-left selective excitatory 

neurons and inhibitory interneurons, respectively. Blue and red arrows, 
selective external input. Black arrows, non-selective external input.  
b, Trajectories projected along the CD in model with external ramping 
input. Activity in unperturbed trials (left), and distribution of end  
points (right). Line denotes mean; shading denotes s.d. Blue, correct  
lick-right trials; red, correct lick-left trials. c, Projected activity in 
bilaterally perturbed correct trials (left), and distribution of end points 
(right). Line denotes mean. Cyan bar on top denotes photoinhibition. 
Lighter colours correspond to higher intensity of photoinhibition.  
d, Projected activity in bilaterally perturbed incorrect trials. e, Projected 
activity in unilaterally perturbed correct trials. Effect of unilateral ALM 
photoinhibition contralateral (left) or ipsilateral (right) to the analysed 
hemisphere (left ALM) is shown. f, Phase line of projected trajectories. 
g, Absolute difference in projection to the CD between perturbed and 
unperturbed trials at the middle delay (green) and end points (magenta). 
h, Behavioural performance of the model (Methods). i–o, As in b–h for 
internal slow dynamics model. p, Schematic of two-hemisphere network 
models with stationary delay activity. q, Projected activity in bilaterally 
perturbed correct trials. Same format as in d. r, Recovery speed of the CD 
in bilaterally perturbed correct trials following perturbation. Note that 
recovery speed in the external ramping model is similar regardless of delay 
dynamics (ramping or stationary).
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Extended Data Fig. 10 | Performance in the random delay task.  
a, Behavioural performance (left), early lick rate (middle) and no-response 
rate (right) in the random delay task. Thin lines, individual sessions 
(n = 23); thick line, grand mean among sessions. b–d, The same format as 
in Fig. 5b–d for the random delay task. Trials with 2-s delay duration are 
shown. Line denotes mean; shading denotes s.e.m. (bootstrap).  

n = 13 sessions. e, Schematics. Projection of trials to the non-selective 
ramping mode (RM). f, Projection of trials to non-selective ramping mode 
in the fixed delay task with 2-s delay. Line, grand mean across sessions 
(n = 11 sessions); shading denotes s.e.m. (bootstrap). g, As in f for the 
random delay task (n = 13 sessions). Trials with 2-s delay duration are 
shown.
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- Accession codes, unique identifiers, or web links for publicly available datasets 
- A list of figures that have associated raw data 
- A description of any restrictions on data availability

Data sets will be shared at CRCNS.ORG in the NWB format.  For network models, Matlab code will be made available for download.
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Life sciences study design
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Sample size The sample sizes are similar to sample sizes used in the field. No statistical methods were used to determine sample size. 

Data exclusions We did not exclude any animal for data analysis. 

Replication We performed recordings from multiple animals to confirm reproducibility. Replications were successful.

Randomization All animals were used for experiments. Trial types were randomly determined by a computer program. 

Blinding During experiments, trial types were randomly determined by a computer program. During spike sorting, experimenters cannot tell the trial 
type, so experimenters were blind to conditions.

Reporting for specific materials, systems and methods

Materials & experimental systems
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Unique biological materials
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Eukaryotic cell lines
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Animals and other organisms

Human research participants

Methods
n/a Involved in the study

ChIP-seq

Flow cytometry

MRI-based neuroimaging

Animals and other organisms
Policy information about studies involving animals; ARRIVE guidelines recommended for reporting animal research

Laboratory animals This study is based on data from 31 male mice (age > P60). We used four transgenic mouse lines: PV-IRES-Cre 70, Ai32 (Rosa-
CAG-LSL-ChR2(H134R)-EYFP-WPRE, JAX 012569) 71, Gad2-cre (a gift from Boris Zemelman), and VGAT-ChR2-EYFP 72 (See 
Supplementary Information Table 1-3 for detail). 

Wild animals This study did not involve wild animals.

Field-collected samples This study did not involve field-collected samples.
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